Complex Data Ingestion – MDPM vs Azure Synapse

๐Ÿ† MDPM vs Azure Synapse – Complex Ingestion Showdown

๐Ÿ† MDPM vs Azure Synapse

Complex Data Ingestion Showdown: 5 Industry Scenarios

๐ŸŽฏ THE CHALLENGE

Can MDPM (Microsoft Dynamics 365 Dataverse Multi-Environment Pro Manager) outperform Azure Synapse Analytics in complex, real-world data ingestion scenarios?

Spoiler: YES! And we’ll prove it across 5 industries with detailed comparisons.

๐Ÿ“Š Comparison Criteria

Metric What We’re Measuring Why It Matters
Time to Production Setup time + Development time + Testing time Faster deployment = Lower cost, faster ROI
Complexity (Lines of Code) Amount of code/configuration required Less code = Easier maintenance, fewer bugs
Skills Required Technical expertise needed Lower skill = More team members can operate
Error Handling Robustness of error recovery Better recovery = Less downtime
Total Cost (Annual) Infrastructure + Licensing + Personnel Direct impact on budget
Flexibility Adaptability to changing requirements Easier changes = Faster business response
๐ŸฅŠ SCENARIO 1 ๐ŸฅŠ

๐Ÿฅ HEALTHCARE: Multi-Source Patient Data Aggregation

The Business Problem

Hospital Network Challenge: 15 hospitals, each with different EMR systems (Epic, Cerner, Meditech), need to aggregate patient data into a central Dataverse for analytics.

Data Complexity:

  • ๐Ÿ“Š 50 million patient records across all facilities
  • ๐Ÿ”— Complex hierarchies: Patients โ†’ Encounters โ†’ Procedures โ†’ Medications โ†’ Lab Results
  • ๐ŸŒ 15 different source APIs with varying schemas
  • ๐Ÿ“‹ 200+ data fields per patient record
  • โš ๏ธ HIPAA compliance required – must track all data lineage
  • ๐Ÿ”„ Daily incremental updates + historical backfill
  • ๐Ÿฅ 12 lookup tables: Providers, Facilities, Diagnoses (ICD-10), Procedures (CPT), Medications (NDC), etc.

Success Criteria:

  • โœ… Complete backfill in under 2 weeks
  • โœ… Daily incremental loads in under 4 hours
  • โœ… 99.9% accuracy with data validation
  • โœ… Full audit trail for HIPAA compliance
  • โœ… Non-technical staff can monitor and troubleshoot

๐Ÿ”ท Azure Synapse Approach

Architecture:

Azure Synapse Pipeline Architecture: 1. Azure Data Factory Pipelines (15 pipelines – one per hospital) 2. Mapping Data Flows for transformation 3. Azure Data Lake Gen2 for staging 4. Dedicated SQL Pool for aggregation 5. Azure Logic Apps for orchestration 6. Azure Key Vault for credentials 7. Azure Monitor for logging 8. Power BI for monitoring dashboards 9. Custom C# scripts for complex transformations 10. Azure Functions for error handling

Implementation Steps:

  1. Week 1-2: Provision Azure resources (Synapse workspace, Data Lake, SQL pools, Key Vault)
  2. Week 3-4: Build 15 ADF pipelines for each hospital’s API
  3. Week 5-6: Create mapping data flows for schema transformation
  4. Week 7-8: Develop C# activities for complex hierarchical lookups
  5. Week 9-10: Implement error handling and retry logic
  6. Week 11-12: Build monitoring dashboards and alerts
  7. Week 13-14: Testing and validation
  8. Week 15-16: HIPAA compliance audit trail implementation

Code Complexity:

Estimated Lines of Code/Configuration: ADF Pipeline JSON: ~2,500 lines ร— 15 pipelines = 37,500 lines Mapping Data Flows: ~1,200 lines ร— 15 = 18,000 lines C# Custom Activities: ~5,000 lines SQL Scripts: ~3,000 lines Logic Apps: ~2,000 lines PowerShell deployment: ~1,500 lines Python validation scripts: ~2,000 lines TOTAL: ~69,000 lines of code/configuration

Skills Required:

  • ๐Ÿ’ผ Azure Data Engineer (2 FTE)
  • ๐Ÿ’ผ .NET Developer for custom activities (1 FTE)
  • ๐Ÿ’ผ SQL Developer (1 FTE)
  • ๐Ÿ’ผ DevOps Engineer for deployment (0.5 FTE)
  • ๐Ÿ’ผ Data Analyst for validation (1 FTE)

Timeline:

PhaseDuration
Design & Architecture2 weeks
Development10 weeks
Testing2 weeks
Deployment2 weeks
TOTAL TO PRODUCTION16 weeks (4 months)

Annual Cost:

ItemAnnual Cost
Synapse Workspace$50,000
Data Lake Storage$12,000
Dedicated SQL Pool$87,000 (DW500c, 24/7)
Azure Functions$3,600
Logic Apps$2,400
Key Vault$600
Monitor & Alerts$1,800
Personnel (5.5 FTE @ $120k avg)$660,000
TOTAL ANNUAL COST$817,400

๐ŸŸข MDPM Approach

Tabs Used:

๐Ÿงน Data Cleaning Bulk Data (Wizard Mode) ๐Ÿ๐Ÿ“ Python Gen ๐Ÿ“‹๐Ÿ”„ Metadata Staging ๐Ÿค– AI Assistant

Implementation Steps:

  1. Day 1: Connect all 15 hospital Dataverse environments
  2. Day 2-3: Use AI Assistant to generate API extraction scripts for each EMR
  3. Day 4-5: Configure Wizard Mode with lookup mappings (12 lookup tables)
  4. Day 6-7: Test with sample data from each hospital (1,000 records each)
  5. Day 8: Generate Python scripts for nightly incremental loads
  6. Day 9-10: Full backfill (automated, runs overnight)

Complete MDPM Workflow:

PHASE 1: ONE-TIME SETUP (Day 1-3) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 1: Environment Setup (30 minutes) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: Environments – Add 15 hospital environments – Connect using MSAL device code – Test: WhoAmI calls succeed โœ… Step 2: Metadata Documentation (1 hour) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: ๐Ÿ“‹๐Ÿ”„ Metadata Staging – Extract table schemas from all 15 environments – Compare to identify differences – Stage metadata for documentation – Result: Complete schema inventory โœ… Step 3: Lookup Table Preparation (2 hours) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: Bulk Data โ†’ Manual Ingestion – Upload 12 reference tables (Providers, Facilities, etc.) – Create lookup staging tables: โ€ข Staging_Providers โ€ข Staging_Facilities โ€ข Staging_ICD10_Codes โ€ข Staging_CPT_Codes โ€ข Staging_NDC_Medications โ€ข … etc. – Result: All lookup data ready โœ… PHASE 2: API INTEGRATION (Day 4-5) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 4: Generate API Extraction Scripts (4 hours) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: ๐Ÿ๐Ÿ“ Python Gen Action: Generate “Bulk Import from CSV” script For Hospital 1 (Epic): โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Client ID: [epic-client-id] โ”‚ โ”‚ Environment: Hospital1_Prod โ”‚ โ”‚ Table: crxxx_patientrecord โ”‚ โ”‚ Click: Generate Python Script โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ Generated Script Features: โœ… MSAL authentication โœ… Batch processing (100 records/batch) โœ… Error handling with retry โœ… Checkpoint/resume capability โœ… Progress tracking Repeat for all 15 hospitals (copy/modify script) Save as: extract_hospital_01_epic.py through extract_hospital_15_meditech.py PHASE 3: LOOKUP MAPPING (Day 6-7) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 5: Configure Wizard Mode (8 hours total) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: Bulk Data โ†’ Bulk Ingestion with Lookups Group 1: Hospital 1 – Patient Records โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Environment: Hospital1_Prod โ”‚ โ”‚ Target Table: crxxx_patientrecord โ”‚ โ”‚ Data Source: [Patient data from API] โ”‚ โ”‚ โ”‚ โ”‚ Lookup 1: Provider (Attending Physician) โ”‚ โ”‚ Source Column: attending_provider_npi โ”‚ โ”‚ Lookup Table: crxxx_provider โ”‚ โ”‚ Match Field: crxxx_npi โ”‚ โ”‚ Binding Field: crxxx_attendingproviderid โ”‚ โ”‚ โ”‚ โ”‚ Lookup 2: Facility โ”‚ โ”‚ Source Column: facility_code โ”‚ โ”‚ Lookup Table: crxxx_facility โ”‚ โ”‚ Match Field: crxxx_facilitycode โ”‚ โ”‚ Binding Field: crxxx_facilityid โ”‚ โ”‚ โ”‚ โ”‚ Lookup 3: Primary Diagnosis (ICD-10) โ”‚ โ”‚ Source Column: primary_diagnosis_code โ”‚ โ”‚ Lookup Table: crxxx_icd10code โ”‚ โ”‚ Match Field: crxxx_icd10code โ”‚ โ”‚ Binding Field: crxxx_primarydiagnosisid โ”‚ โ”‚ โ”‚ โ”‚ … (configure 9 more lookups) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ Repeat for Groups 2-15 (one per hospital) ๐Ÿ’พ SAVE CONFIGURATION for reuse! Click: “๐Ÿ’พ Save Current Configuration” PHASE 4: DATA CLEANING (Day 8) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 6: Clean Sample Data (2 hours) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: ๐Ÿงน Data Cleaning Upload: hospital_01_sample_1000_records.csv Cleaning Operations (AI-Assisted): โœ… Remove duplicates by MRN (Medical Record Number) โœ… Standardize date formats (15 different formats detected!) โœ… Validate phone numbers (remove invalid) โœ… Clean SSN formatting (XXX-XX-XXXX) โœ… Standardize names (Title Case) โœ… Validate email addresses โœ… Handle null values (default strategies) Auto-Column Matching: AI automatically maps: hospital_patient_id โ†’ crxxx_mrn patient_first_name โ†’ crxxx_firstname patient_last_name โ†’ crxxx_lastname date_of_birth โ†’ crxxx_dateofbirth … (50+ fields matched automatically) Export: hospital_01_cleaned.csv PHASE 5: TESTING (Day 9) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 7: Test Run (4 hours) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: Bulk Data โ†’ Wizard Mode Load Configuration: “Hospital Patient Ingestion v1.0” Test with cleaned sample data (1,000 records ร— 15 hospitals) Click: “๐Ÿš€ Run All Lookup Ingestion Groups” Results: โœ… Hospital 1: 1,000/1,000 records (100% success) โœ… Hospital 2: 998/1,000 records (99.8% success – 2 invalid NPIs) โœ… Hospital 3: 1,000/1,000 records (100% success) … (all hospitals tested) Total: 14,985/15,000 records (99.9% success rate) Review errors in error log: – 15 records with invalid provider NPIs (fix lookup table) – Fix and re-run failed records โœ… PHASE 6: FULL BACKFILL (Day 10) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 8: Generate Production Scripts (1 hour) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: ๐Ÿ๐Ÿ“ Python Gen Generate batch processing script for each hospital: import pandas as pd import msal import requests from datetime import datetime # Configuration CLIENT_ID = “prod-client-id” TENANT_ID = “tenant-id” ENV_URL = “https://hospital1.crm.dynamics.com” TABLE_NAME = “crxxx_patientrecord” # Read patient data in chunks (memory efficient) chunk_size = 10000 checkpoint_file = “checkpoint_hospital01.json” # Process 50 million records across all hospitals # With checkpoint/resume capability for chunk in pd.read_csv(‘all_patients_hospital01.csv’, chunksize=chunk_size): # Clean with pandas chunk = clean_patient_data(chunk) # Batch and send (100 per API call) for batch in create_batches(chunk, 100): send_to_dataverse(batch) save_checkpoint(current_row) print(f”โœ… {current_row:,} / 3,333,333 (Hospital 1)”) Step 9: Run Overnight Backfill (Automated) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Schedule all 15 Python scripts to run overnight: Hospital 1: 3.3M records โ†’ ~4 hours Hospital 2: 4.1M records โ†’ ~5 hours Hospital 3: 2.8M records โ†’ ~3.5 hours … (all run in parallel) TOTAL BACKFILL TIME: ~8 hours (overnight) 50 million records successfully ingested! PHASE 7: DAILY INCREMENTAL (Automated) โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• Step 10: Setup Daily Sync (30 minutes) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Schedule Python scripts via Windows Task Scheduler or cron: Daily at 2:00 AM: – Run extract_hospital_01_incremental.py – Run extract_hospital_02_incremental.py – … (all 15 hospitals) Each script: 1. Queries EMR API for records modified in last 24 hours 2. Cleans data with pandas 3. Uses Wizard Mode lookup mappings (saved config) 4. Ingests via Batch API 5. Logs results Daily incremental: ~50,000 records/day across all hospitals Processing time: ~45 minutes total

Code Complexity:

Total Code Written: Python extraction scripts: ~200 lines ร— 15 = 3,000 lines Wizard Mode configuration: 0 lines (GUI-based, saved as JSON) Data cleaning rules: 0 lines (AI-assisted, GUI-based) TOTAL: ~3,000 lines of Python (95% generated by MDPM!) Configuration files (auto-generated): lookup_config.json: ~500 lines (saved from UI) cleaning_rules.json: ~300 lines (saved from UI)

Skills Required:

  • โœ… Basic Python knowledge (can copy/modify generated scripts)
  • โœ… Understanding of healthcare data (business user level)
  • โœ… NO Azure expertise required
  • โœ… NO SQL expertise required
  • โœ… NO DevOps expertise required

Team: 1-2 people (vs 5.5 FTE for Synapse)

Timeline:

PhaseDuration
Setup & Configuration3 days
API Integration2 days
Lookup Mapping2 days
Testing1 day
Backfill1 day (overnight)
Daily Automation Setup0.5 days
TOTAL TO PRODUCTION9.5 days (~2 weeks)

Annual Cost:

ItemAnnual Cost
Dataverse Storage (additional)$6,000
Power Platform licensing$12,000
Personnel (1.5 FTE @ $100k avg)$150,000
MDPM App$0 (one-time purchase)
TOTAL ANNUAL COST$168,000

๐Ÿ† SCENARIO 1 WINNER: MDPM

MetricAzure SynapseMDPMWinner
Time to Production 16 weeks (4 months) 9.5 days (~2 weeks) MDPM โœ… (8x faster)
Lines of Code 69,000 lines 3,000 lines (95% generated) MDPM โœ… (23x less code)
Team Size 5.5 FTE 1.5 FTE MDPM โœ… (3.7x fewer people)
Annual Cost $817,400 $168,000 MDPM โœ… ($649k savings, 79% cheaper)
Skills Required Azure Engineer, .NET Dev, SQL Dev, DevOps Basic Python, Healthcare domain knowledge MDPM โœ… (Much lower barrier)
Maintenance Effort High (complex pipelines, custom code) Low (GUI config, generated scripts) MDPM โœ…

MDPM wins on EVERY metric! ๐Ÿ’š

๐ŸฅŠ SCENARIO 2 ๐ŸฅŠ

๐Ÿฆ FINANCIAL SERVICES: Regulatory Compliance Data Warehouse

The Business Problem

Investment Bank Challenge: Aggregate trading data from 50 different systems for regulatory reporting (MiFID II, EMIR, Dodd-Frank).

Data Complexity:

  • ๐Ÿ“Š 2 billion transactions annually
  • ๐Ÿ”— Hierarchical structures: Trades โ†’ Orders โ†’ Executions โ†’ Allocations โ†’ Settlements
  • ๐ŸŒ 50 source systems: Trading platforms, OMS, EMS, prime brokers, exchanges
  • โฑ๏ธ Real-time requirements: T+15 minutes for reportable transactions
  • ๐Ÿ“‹ 300+ fields per transaction
  • ๐Ÿ” 25 lookup/reference tables: Instruments, Counterparties, Legal Entities, Venues
  • ๐ŸŒ Multiple currencies, time zones, regulatory regimes
  • ๐Ÿ“œ 7-year retention requirement

Complete MDPM Solution

Tabs Used:

๐Ÿ๐Ÿ“ Python Gen Bulk Data (Direct @odata.bind) ๐Ÿงน Data Cleaning ๐Ÿ“‹๐Ÿ”„ Metadata Staging Data Analysis
COMPLETE FINANCIAL SERVICES WORKFLOW โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• PHASE 1: REFERENCE DATA SETUP (Day 1) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: Bulk Data โ†’ Manual Ingestion Upload 25 reference tables: 1. Instruments (ISIN master): 500,000 records 2. Counterparties (LEI registry): 1,000,000 records 3. Venues (MIC codes): 5,000 records 4. Legal Entities: 50,000 records 5. Currency codes: 150 records … (20 more reference tables) Processing time: ~2 hours for all reference data PHASE 2: REAL-TIME INGESTION (Day 2-3) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: ๐Ÿ๐Ÿ“ Python Gen Generate: Real-time streaming ingestion scripts Python Script (Generated for each of 50 sources): import pandas as pd import msal import requests from datetime import datetime, timedelta import json # Real-time configuration SOURCE_API = “https://trading-platform-01.bank.com/api/trades” POLLING_INTERVAL = 60 # seconds (poll every minute) BATCH_SIZE = 100 while True: # Get last 15 minutes of trades cutoff_time = datetime.now() – timedelta(minutes=15) trades = fetch_new_trades(SOURCE_API, cutoff_time) if trades: # Clean and enrich df = pd.DataFrame(trades) df = clean_financial_data(df) df = enrich_with_lookups(df) # Ingest with @odata.bind for trade in df.to_dict(‘records’): record = { “crxxx_tradeid”: trade[‘trade_id’], “crxxx_tradetime”: trade[‘trade_timestamp’], “crxxx_quantity”: trade[‘quantity’], “crxxx_price”: trade[‘price’], “crxxx_notional”: trade[‘notional’], # Lookups with @odata.bind “crxxx_instrumentid@odata.bind”: f”/crxxx_instruments({instrument_guid_map[trade[‘isin’]]})”, “crxxx_counterpartyid@odata.bind”: f”/crxxx_counterparties({counterparty_guid_map[trade[‘lei’]]})”, “crxxx_venueid@odata.bind”: f”/crxxx_venues({venue_guid_map[trade[‘mic’]]})” } ingest_to_dataverse(record) log_regulatory_event(record) time.sleep(POLLING_INTERVAL) Deploy 50 scripts (one per source) on VMs Result: T+5 minute ingestion (well under T+15 requirement!) PHASE 3: HISTORICAL BACKFILL (Day 4-5) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: ๐Ÿ๐Ÿ“ Python Gen Generate: Batch historical loader Load 7 years of historical data: – 2 billion transactions – Split by year: 285M transactions/year – Process in parallel: 10 years ร— 50 sources = 500 jobs Python Script (with checkpoint/resume): import pandas as pd CHECKPOINT_FILE = “checkpoint_source01_year2024.json” def load_historical_trades(source_id, year): checkpoint = load_checkpoint() start_row = checkpoint.get(‘last_row’, 0) chunk_size = 50000 for chunk in pd.read_csv(f’trades_{source_id}_{year}.csv’, chunksize=chunk_size, skiprows=range(1, start_row)): # Clean chunk = clean_financial_data(chunk) # Batch ingest (100 per API call) for batch in create_batches(chunk, 100): ingest_batch(batch) save_checkpoint(current_row) # Progress print(f”Source {source_id} Year {year}: ” + f”{current_row:,} / 285,000,000″) Run all 500 jobs in parallel (overnight) TOTAL TIME: ~72 hours (3 days) for 2 billion records PHASE 4: DATA VALIDATION (Day 6) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Tab: Data Analysis Query: Check data quality – Count by source system – Count by trade date – Identify missing ISINs – Check currency conversions – Validate timestamps (T+15 compliance) Results displayed in interactive charts: โœ… All 2B records loaded โœ… 99.95% have valid ISIN lookups โœ… 0.05% flagged for review (100,000 records) โœ… 100% within T+15 minute requirement PHASE 5: REGULATORY REPORTING (Day 7
Shopping Cart