MDPN Tab Selection Guide – What to Use When

๐ŸŽฏ Tab Selection Guide – What to Use When

๐ŸŽฏ Tab Selection Guide – What to Use When

Decision matrix for selecting the right tab for every data task

๐Ÿ“Š Quick Decision Matrix

๐Ÿ“ฆ Bulk Data

Best For: Importing/exporting large volumes

DATA INGESTION LOOKUPS EXPORT

๐Ÿ Python

Best For: Data analysis & transformation

ANALYSIS TRANSFORM VISUALIZE

๐Ÿงน Data Cleaning

Best For: Dirty data from legacy systems

CLEANING VALIDATION MATCHING

๐Ÿ“Š Visualizations

Best For: Charts & dashboards

CHARTS DASHBOARDS REPORTS

๐Ÿค– AI Assistant

Best For: Learning & troubleshooting

HELP TROUBLESHOOT GUIDANCE

๐Ÿ” CRUD Operations

Best For: Single record operations

SINGLE RECORD TESTING QUICK FIXES

๐Ÿง  Universal Query

Best For: Complex queries

COMPLEX QUERIES JOINS EXPLORATION

๐Ÿ” I Want To… (Decision Guide)

๐Ÿ“ค Import Data into Dataverse

Small CSV/JSON file (< 10,000 records)

Use: ๐Ÿ“ฆ Bulk Data โ†’ Manual Ingestion

Quick and simple upload

Large dataset (> 100,000 records)

Use: ๐Ÿ“ฆ Bulk Data โ†’ Manual Ingestion โ†’ Enable batch processing

Handles large volumes with progress tracking

Data with relationships (lookups)

Use: ๐Ÿ“ฆ Bulk Data โ†’ Wizard Mode (Lookups)

Auto-resolves parent/child relationships

Dirty data needing cleaning

Use: ๐Ÿงน Data Cleaning โ†’ Clean โ†’ Export โ†’ ๐Ÿ“ฆ Bulk Data

Two-step process: clean then import

From external API or database

Use: ๐Ÿ๐Ÿ“ Python Gen โ†’ Generate script โ†’ Run locally

Production-ready code for scheduled jobs

๐Ÿ“ฅ Export Data from Dataverse

Simple table export

Use: ๐Ÿง  Universal Query Studio โ†’ Execute โ†’ Export

Direct OData query with export options

Filtered/selected records

Use: ๐Ÿ“‹ FetchXML/Query โ†’ Write query โ†’ Export

Full control with FetchXML

Multiple related tables

Use: ๐Ÿงฉ Multi-Table Query โ†’ Join tables โ†’ Export

Handles complex relationships

For analysis in Python

Use: ๐Ÿ Python โ†’ query_dataverse() โ†’ pandas DataFrame

Direct to Python for analysis

๐Ÿ”„ Transform & Clean Data

Simple cleaning (email, phone, dates)

Use: ๐Ÿงน Data Cleaning โ†’ AI Column Matching โ†’ Apply rules

AI-powered auto-matching and cleaning

Complex transformations (business logic)

Use: ๐Ÿ Python โ†’ pandas operations โ†’ transform data

Full Python flexibility for complex logic

Deduplication

Use: ๐Ÿ”„ Data Deduplication โ†’ Upload โ†’ Find duplicates

Specialized deduplication tools

Validate data quality

Use: ๐Ÿงน Data Cleaning โ†’ Validation rules โ†’ Check quality

Built-in validation for common data types

๐Ÿ“Š Analyze & Visualize Data

Quick charts and graphs

Use: ๐Ÿ“Š Visualizations โ†’ Select data โ†’ Choose chart type

Interactive charts without coding

Statistical analysis

Use: ๐Ÿ Python โ†’ pandas + scipy โ†’ Statistical tests

Full statistical capabilities

Simple counts and aggregations

Use: ๐Ÿ“Š Data Analysis โ†’ Select field โ†’ View counts

Quick field-level statistics

Advanced visualizations

Use: ๐Ÿ Python โ†’ matplotlib/seaborn โ†’ Custom plots

Professional publication-quality charts

๐Ÿ”„ Common Workflow Patterns

Workflow 1: Data Migration

Source System โ†’ ๐Ÿงน Data Cleaning โ†’ ๐Ÿ“ฆ Bulk Data (Wizard) โ†’ Dataverse

For: Legacy system migration with dirty data

Workflow 2: Analytics Pipeline

Dataverse โ†’ ๐Ÿ Python (analysis) โ†’ ๐Ÿ“Š Visualizations โ†’ Report

For: Monthly business reports, KPIs

Workflow 3: API Integration

External API โ†’ ๐Ÿ๐Ÿ“ Python Gen (script) โ†’ Schedule Task โ†’ Dataverse

For: Daily data sync from external systems

Workflow 4: Data Quality Audit

Dataverse โ†’ ๐Ÿงน Data Cleaning (validate) โ†’ Issues List โ†’ Fix

For: Quarterly data quality checks

โš ๏ธ Common Mistakes & Corrections

โŒ Mistake: Using Python for simple imports

Problem: Writing Python scripts when Bulk Data tab can do it in 2 clicks

โœ… Correction: Use ๐Ÿ“ฆ Bulk Data for imports > Use Python only for complex transformations

โŒ Mistake: Manual lookups in Excel

Problem: Exporting to Excel, doing VLOOKUPs, re-importing

โœ… Correction: Use ๐Ÿ“ฆ Bulk Data โ†’ Wizard Mode for automatic lookup resolution

โŒ Mistake: Complex queries in CRUD tab

Problem: Trying to write joins and aggregates in simple CRUD interface

โœ… Correction: Use ๐Ÿง  Universal Query Studio or ๐Ÿงฉ Multi-Table Query

โŒ Mistake: Direct imports without cleaning

Problem: Importing dirty data, then fixing errors one by one

โœ… Correction: Always run through ๐Ÿงน Data Cleaning first

๐Ÿ’ก Pro Tip: The 80/20 Rule

80% of tasks can be done with these 4 tabs:

  1. ๐Ÿ“ฆ Bulk Data – For imports/exports
  2. ๐Ÿงน Data Cleaning – For data quality
  3. ๐Ÿง  Universal Query – For queries
  4. ๐Ÿค– AI Assistant – For help

Learn these well before exploring others!

๐Ÿ“ˆ Performance Considerations

Operation Fastest Tab Records/Second When to Use
Simple Data Import ๐Ÿ“ฆ Bulk Data (Batch API) 100-200/sec Large volume imports
Import with Lookups ๐Ÿ“ฆ Bulk Data (Wizard) 10-20/sec Related data imports
Data Analysis ๐Ÿ Python (pandas) Varies Complex calculations
Query Execution ๐Ÿง  Universal Query 1000+/sec Fast data retrieval
Data Cleaning ๐Ÿงน Data Cleaning 50-100/sec Pre-import cleanup

๐Ÿ‘ฅ By User Role

๐Ÿ‘จโ€๐Ÿ’ผ Business Analyst

Essential Tabs:

  • ๐Ÿ“Š Visualizations – Create dashboards
  • ๐Ÿ“Š Data Analysis – Quick insights
  • ๐Ÿ“ฆ Bulk Data – Import data sources
  • ๐Ÿค– AI Assistant – Get help

๐Ÿ‘ฉโ€๐Ÿ’ป Data Engineer

Essential Tabs:

  • ๐Ÿ Python – Complex transformations
  • ๐Ÿ“ฆ Bulk Data – ETL pipelines
  • ๐Ÿงน Data Cleaning – Data quality
  • ๐Ÿ“‹ Metadata – Documentation

๐Ÿ‘จโ€๐Ÿ”ง System Administrator

Essential Tabs:

  • ๐ŸŒ Environments – Manage connections
  • ๐Ÿ—‘๏ธ Bulk Delete – Clean up data
  • ๐Ÿ“‹ Metadata – Audit tracking
  • ๐Ÿ“œ History – Monitor API calls

๐Ÿง‘โ€๐Ÿ’ป Developer

Essential Tabs:

  • ๐Ÿงช API Advanced – API testing
  • ๐Ÿ๐Ÿ“ Python Gen – Code generation
  • ๐Ÿ” CRUD Operations – Debug data
  • ๐Ÿค– AI Support – Query generation

๐Ÿ”„ Integration Patterns

Integration Type Primary Tab Secondary Tab Output
Scheduled Data Sync ๐Ÿ๐Ÿ“ Python Gen ๐Ÿ“ฆ Bulk Data (config) .py script for Task Scheduler
Data Quality Dashboard ๐Ÿงน Data Cleaning ๐Ÿ“Š Visualizations Interactive quality dashboard
Compliance Documentation ๐Ÿ“‹ Metadata Staging ๐Ÿ Python (export) PDF documentation
Real-time Monitoring ๐Ÿ Python (continuous) ๐Ÿ“Š Visualizations (live) Live monitoring dashboard

๐Ÿš€ Getting Started Recommendation

If you’re new to MDPM, follow this learning path:

  1. Week 1: Master ๐ŸŒ Environments and ๐Ÿ“ฆ Bulk Data
  2. Week 2: Learn ๐Ÿงน Data Cleaning and ๐Ÿ“Š Visualizations
  3. Week 3: Explore ๐Ÿ Python for analysis
  4. Week 4: Try advanced features (Wizard Mode, Metadata)

Use ๐Ÿค– AI Assistant whenever you’re stuck!

โ“ Still Not Sure? Ask the AI!

Don’t guess which tab to use! Go to ๐Ÿค– AI Assistant and describe your task:

  • “I need to import customer data from a CSV with address lookups”
  • “How do I create a monthly sales report?”
  • “Best way to clean up duplicate customer records?”
  • “I want to automate daily data imports from our ERP”

The AI will recommend the best tab and even give you step-by-step instructions!

Shopping Cart