๐ฏ Tab Selection Guide – What to Use When
Decision matrix for selecting the right tab for every data task
๐ Quick Decision Matrix
๐ฆ Bulk Data
Best For: Importing/exporting large volumes
DATA INGESTION LOOKUPS EXPORT๐ Python
Best For: Data analysis & transformation
ANALYSIS TRANSFORM VISUALIZE๐งน Data Cleaning
Best For: Dirty data from legacy systems
CLEANING VALIDATION MATCHING๐ Visualizations
Best For: Charts & dashboards
CHARTS DASHBOARDS REPORTS๐ค AI Assistant
Best For: Learning & troubleshooting
HELP TROUBLESHOOT GUIDANCE๐ CRUD Operations
Best For: Single record operations
SINGLE RECORD TESTING QUICK FIXES๐ง Universal Query
Best For: Complex queries
COMPLEX QUERIES JOINS EXPLORATION๐ I Want To… (Decision Guide)
๐ค Import Data into Dataverse
Small CSV/JSON file (< 10,000 records)
Use: ๐ฆ Bulk Data โ Manual Ingestion
Quick and simple upload
Large dataset (> 100,000 records)
Use: ๐ฆ Bulk Data โ Manual Ingestion โ Enable batch processing
Handles large volumes with progress tracking
Data with relationships (lookups)
Use: ๐ฆ Bulk Data โ Wizard Mode (Lookups)
Auto-resolves parent/child relationships
Dirty data needing cleaning
Use: ๐งน Data Cleaning โ Clean โ Export โ ๐ฆ Bulk Data
Two-step process: clean then import
From external API or database
Use: ๐๐ Python Gen โ Generate script โ Run locally
Production-ready code for scheduled jobs
๐ฅ Export Data from Dataverse
Simple table export
Use: ๐ง Universal Query Studio โ Execute โ Export
Direct OData query with export options
Filtered/selected records
Use: ๐ FetchXML/Query โ Write query โ Export
Full control with FetchXML
Multiple related tables
Use: ๐งฉ Multi-Table Query โ Join tables โ Export
Handles complex relationships
For analysis in Python
Use: ๐ Python โ query_dataverse() โ pandas DataFrame
Direct to Python for analysis
๐ Transform & Clean Data
Simple cleaning (email, phone, dates)
Use: ๐งน Data Cleaning โ AI Column Matching โ Apply rules
AI-powered auto-matching and cleaning
Complex transformations (business logic)
Use: ๐ Python โ pandas operations โ transform data
Full Python flexibility for complex logic
Deduplication
Use: ๐ Data Deduplication โ Upload โ Find duplicates
Specialized deduplication tools
Validate data quality
Use: ๐งน Data Cleaning โ Validation rules โ Check quality
Built-in validation for common data types
๐ Analyze & Visualize Data
Quick charts and graphs
Use: ๐ Visualizations โ Select data โ Choose chart type
Interactive charts without coding
Statistical analysis
Use: ๐ Python โ pandas + scipy โ Statistical tests
Full statistical capabilities
Simple counts and aggregations
Use: ๐ Data Analysis โ Select field โ View counts
Quick field-level statistics
Advanced visualizations
Use: ๐ Python โ matplotlib/seaborn โ Custom plots
Professional publication-quality charts
๐ Common Workflow Patterns
Workflow 1: Data Migration
Source System โ ๐งน Data Cleaning โ ๐ฆ Bulk Data (Wizard) โ Dataverse
For: Legacy system migration with dirty data
Workflow 2: Analytics Pipeline
Dataverse โ ๐ Python (analysis) โ ๐ Visualizations โ Report
For: Monthly business reports, KPIs
Workflow 3: API Integration
External API โ ๐๐ Python Gen (script) โ Schedule Task โ Dataverse
For: Daily data sync from external systems
Workflow 4: Data Quality Audit
Dataverse โ ๐งน Data Cleaning (validate) โ Issues List โ Fix
For: Quarterly data quality checks
โ ๏ธ Common Mistakes & Corrections
โ Mistake: Using Python for simple imports
Problem: Writing Python scripts when Bulk Data tab can do it in 2 clicks
โ Correction: Use ๐ฆ Bulk Data for imports > Use Python only for complex transformations
โ Mistake: Manual lookups in Excel
Problem: Exporting to Excel, doing VLOOKUPs, re-importing
โ Correction: Use ๐ฆ Bulk Data โ Wizard Mode for automatic lookup resolution
โ Mistake: Complex queries in CRUD tab
Problem: Trying to write joins and aggregates in simple CRUD interface
โ Correction: Use ๐ง Universal Query Studio or ๐งฉ Multi-Table Query
โ Mistake: Direct imports without cleaning
Problem: Importing dirty data, then fixing errors one by one
โ Correction: Always run through ๐งน Data Cleaning first
๐ก Pro Tip: The 80/20 Rule
80% of tasks can be done with these 4 tabs:
- ๐ฆ Bulk Data – For imports/exports
- ๐งน Data Cleaning – For data quality
- ๐ง Universal Query – For queries
- ๐ค AI Assistant – For help
Learn these well before exploring others!
๐ Performance Considerations
| Operation | Fastest Tab | Records/Second | When to Use |
|---|---|---|---|
| Simple Data Import | ๐ฆ Bulk Data (Batch API) | 100-200/sec | Large volume imports |
| Import with Lookups | ๐ฆ Bulk Data (Wizard) | 10-20/sec | Related data imports |
| Data Analysis | ๐ Python (pandas) | Varies | Complex calculations |
| Query Execution | ๐ง Universal Query | 1000+/sec | Fast data retrieval |
| Data Cleaning | ๐งน Data Cleaning | 50-100/sec | Pre-import cleanup |
๐ฅ By User Role
๐จโ๐ผ Business Analyst
Essential Tabs:
- ๐ Visualizations – Create dashboards
- ๐ Data Analysis – Quick insights
- ๐ฆ Bulk Data – Import data sources
- ๐ค AI Assistant – Get help
๐ฉโ๐ป Data Engineer
Essential Tabs:
- ๐ Python – Complex transformations
- ๐ฆ Bulk Data – ETL pipelines
- ๐งน Data Cleaning – Data quality
- ๐ Metadata – Documentation
๐จโ๐ง System Administrator
Essential Tabs:
- ๐ Environments – Manage connections
- ๐๏ธ Bulk Delete – Clean up data
- ๐ Metadata – Audit tracking
- ๐ History – Monitor API calls
๐งโ๐ป Developer
Essential Tabs:
- ๐งช API Advanced – API testing
- ๐๐ Python Gen – Code generation
- ๐ CRUD Operations – Debug data
- ๐ค AI Support – Query generation
๐ Integration Patterns
| Integration Type | Primary Tab | Secondary Tab | Output |
|---|---|---|---|
| Scheduled Data Sync | ๐๐ Python Gen | ๐ฆ Bulk Data (config) | .py script for Task Scheduler |
| Data Quality Dashboard | ๐งน Data Cleaning | ๐ Visualizations | Interactive quality dashboard |
| Compliance Documentation | ๐ Metadata Staging | ๐ Python (export) | PDF documentation |
| Real-time Monitoring | ๐ Python (continuous) | ๐ Visualizations (live) | Live monitoring dashboard |
๐ Getting Started Recommendation
If you’re new to MDPM, follow this learning path:
- Week 1: Master ๐ Environments and ๐ฆ Bulk Data
- Week 2: Learn ๐งน Data Cleaning and ๐ Visualizations
- Week 3: Explore ๐ Python for analysis
- Week 4: Try advanced features (Wizard Mode, Metadata)
Use ๐ค AI Assistant whenever you’re stuck!
โ Still Not Sure? Ask the AI!
Don’t guess which tab to use! Go to ๐ค AI Assistant and describe your task:
- “I need to import customer data from a CSV with address lookups”
- “How do I create a monthly sales report?”
- “Best way to clean up duplicate customer records?”
- “I want to automate daily data imports from our ERP”
The AI will recommend the best tab and even give you step-by-step instructions!
